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A B S T R A C T

This study addresses the characterization of normal gait and pathological deviations caused by neurological
diseases. We focus on the angular knee kinematics in the sagittal plane and we propose to exploit Hidden
Markov Models to build a statistical model of normal gait. Such model provides a log-likelihood score
that quantifies gait quality. Hence allowing to assess deviations of pathological cycles from normal gait.
Our approach allows a refined characterization of motor impairments of three different patients’ groups. In
particular, it detects the affected lower limb in Hemiparetic patients. Comparatively to the Gait Variable Score
and a Dynamic Time Warping-based metric, our results show that our statistical method is more effective for
finely quantifying pathological deviations. Finally, we show the potential use of our methodology to assess
therapeutic impacts during gait rehabilitation, which represents a promising avenue for improving patient
care.
1. Introduction

Gait, as a gross motor function, is impacted by neurological dis-
eases that lead to different sorts of motor impairments. The advent
of sensor technologies like 3D motion capture [1], Inertial Measure-
ment Units (IMUs) [2–7] and pressure sensors [8], has enabled precise
characterization of gait changes related to motor impairments.

Clinical Gait Analysis takes advantage of such advancements to
quantify deviations from normal gait. Indeed, various deviation mea-
sures have been proposed in the literature, such as the Gait Deviation
Index (GDI) and the Gait Profile Score (GPS) [3,9–11]. These scores
are of high interest for decision-aid in clinical settings, especially
for patient follow-up and for evaluating therapeutic impacts during
rehabilitation.

Measuring deviations in quantified gait analysis typically involves
segmenting signals into cycles, cycle normalization [12–14], and re-
ferring to a normal gait reference. Such representative is usually an
average of healthy normalized gait cycles [5,15]. Pathological devia-
tions are often measured by means of the Euclidean distance [9,11,16]
as in the GDI and the GPS. More recently, the literature has pointed
out the limitations of the Euclidean distance for aligning gait signals
that present temporal shifts [17,18]. Such works show indeed that this
practice yields a loss of precision when quantifying gait deviations.
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For this reason, other works exploit Dynamic Time Warping, taking
advantage of its capability to perform nonlinear time-alignments [1–3,
5,8]. However, such works quantify deviations based on a deterministic
approach, since they compare a given cycle to a single reference repre-
senting normal gait. This deterministic framework cannot incorporate
the intrinsic variance existing in healthy gait.

Some recent works in the literature have proposed alternatives for
quantifying gait deviations. In [19], the authors proposed an Abnor-
mality Index, based on a probabilistic framework. They estimate two
Probability Density Functions (PDFs), one on healthy cycles and the
other on pathological ones, per point. A modified likelihood ratio from
both PDFs is then calculated per point of each cycle. However, this
approach does not fully model the non-stationary nature of gait signals
and depends on weights established according to ratings of an expert.
This limits the gradual severity assessment of the disease [20,21].

Hidden Markov Models (HMMs) are well known for their power
in capturing the dynamics of gait signals and modeling the different
phases of a gait cycle [22,23]. While HMMs have primarily been
exploited for gait recognition and classification [24,25], the present
study proposes to use HMMs to build a statistical model of normal gait.
Indeed, our first hypothesis is that the intrinsic variability of normal
gait can be well captured by a statistical approach based on HMMs.
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Table 1
Descriptive statistics for healthy subjects and patients.

Healthy subjects (LUX) Healthy subjects (CRC) Pathological patients (CRC) ‘‘Pre-T’’

Number of patients 52 52 38
Female 23 34 13
Age (Mean ± Std) 37.67 ± 13.76 (years old) 22.62 ± 3.89 (years old) 46.82 ± 12.93 (years old)
Height (Mean ± Std) 1.75 ± 0.1 (m) 1.71 ± 0.09 (m) 1.70 ± 0.10 (m)
Weight (Mean ± Std) 72.87 ± 13.07 (kg) 65.28 ± 10.77 (kg) 71.06 ± 13.99 (kg)
Speed (Mean ± Std) 1.15 ± 0.15 (m/s) 1.20 ± 0.14 (m/s) 0.52 ± 0.24 (m/s)
Number of cycles 514 526 346
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Our second hypothesis is that the log-likelihood given by the model on
ny cycle may be used as a gait quality score, able to finely quantify
ait degradation induced by neurological diseases. The third hypothesis
s the potential robustness of the statistical approach when confronted
o data recorded under different acquisition conditions.

To the best of our knowledge, this is the first work in the literature
proposing a gait quality measure based on an HMM. In this study, our

ain objectives are : (i) to evaluate the HMM log-likelihood score for
ssessing motor impairments in patients with hemiparesis, paraparesis
nd tetraparesis; (ii) to study the ability of the log-likelihood score for
uantifying therapeutic impacts in gait rehabilitation.

Both objectives are addressed comparatively to the state-of-the-art
on gait deviation scores. Additionally, we investigate the robustness of
the proposed log-likelihood score by using two datasets recorded under
different acquisition conditions.

The paper is structured as follows. Section 2 describes our databases
and their acquisition protocol, as well as the methodology followed in
his work. Results are presented in Section 3 and discussed in Section 4.

Conclusions and future work are finally stated in Section 5.

2. Materials and methods

2.1. Methodology

This retrospective study analyzes spontaneous walking data from
wo datasets, collected in different acquisition conditions. The first one,
eferred to as ‘‘LUX dataset’’, contains only angular kinematic data
rom healthy subjects. It is devoted to build a normal gait model. The
econd dataset, referred to as ‘‘CRC dataset’’, contains data from healthy
ubjects and patients. It is used to quantify gait deviations of healthy

and pathological cycles with regard to the normal gait model, thanks
o the HMM likelihood score.

We evaluate the effectiveness of such score against state-of-the-art
methods, namely GPS and DTW-based scores. All scores are com-
puted only on the knee joint kinematics in the sagittal plane (flex-
ion/extension) because of its major role in maintaining stance stability
on this plane, being characteristic of normal gait [12]. Of note, in the
following we refer to the GVS (Gait Variable Score) that is the knee
omponent of the GPS [11].

For the DTW-based score, we compute the DTW distance between
ach cycle from the test set (CRC dataset) to a reference gait cycle,
btained by averaging all cycles in the training set (LUX dataset). For

computing the GVS, we follow the same methodology but using the
Euclidean distance.

We conduct the comparative analyses through a systematic ap-
proach. We start with a global analysis of score distributions across
groups, followed by an individual evaluation. Gait asymmetry is then
assessed by calculating the absolute difference between the mean scores
of the left and right sides for each patient. Finally, we assess the
proposed method’s ability in evaluating therapeutic impacts during
gait rehabilitation by analyzing pre- and post-treatment scores for each
patient from the CRC dataset.

To evaluate the statistical significance of differences between
groups, we employ the Mann–Whitney U test, with a significance
threshold set at 0.05. For significant differences, we further quantify
the effect size using Cliff’s delta (𝛿) [26]. It ranges from −1 to 1, where
 g

2 
𝛿 = 0 indicates no difference between groups. A 𝛿 < 0 means the first
roup tends to have smaller values, while 𝛿 > 0 suggests that the first

group tends to have larger values. This provides a clear measure of both
the magnitude and direction of the observed differences.

2.2. Data collection and description

2.2.1. LUX dataset
This dataset contains angular kinematic signals from 52 healthy

subjects with no neuro-orthopaedic trouble, for three joints (knee, ankle
and hip) in the sagittal plane. Further details are given in Table 1.

Data were collected at the ‘‘Centre National de Rééducation Fonc-
tionnelle et de Réadaptation’’ - Rehazenter, Luxembourg [27]. All
participants gave informed written consent prior to their inclusion
and the protocol was conformed to the Declaration of Helsinki and
approved by the Ethics Committee of the Rehazenter. This dataset is
available online for academic and research purposes [27].

The 3D trajectories of 24 reflective skin markers were recorded
using the 10-camera optoelectronic system (OQUS-4, Qualisys AB, Swe-
en) sampled at 100 Hz. All data were processed with a custom Matlab

program based on the Biomechanical ToolKit (BTK). The joint kine-
atics were calculated using the 3D Kinematics and Inverse Dynamics

oolkit proposed by Dumas, and freely available on the MathWorks File
xchange [27].

Participants were asked to walk on a straight 10-m walkway under
five walking speed conditions. In this study, we only exploit the data
recorded at spontaneous walking speed. The available walking se-
quences (cycles) were normalized as a percentage of the total duration
of the walking cycle over 101 points.

2.2.2. CRC dataset
We exploit angular kinematic data acquired during a spontaneous

walking task from 52 healthy subjects and 38 patients suffering from
eurological diseases, such as cerebral palsy, traumatic brain injury,

spinal cord injury, stroke or multiple sclerosis. Table 1 reports more
etails.

Data was collected at the ‘‘Centre de Réadaptation de Coubert’’ of
UGECAM Ile-de-France, which is a healthcare institution specialized in
neuromotor rehabilitation. Each participant was informed that his/her
data might be used for research purposes, and no participant objected
to the use of his/her data. This retrospective study was approved
on April 10th, 2019 by the internal Ethics Committee of UGECAM
Ile-de-France.

Data acquisition was carried out using the Codamotion optoelec-
ronic system, integrating four CX1 cameras placed in each corner of
he laboratory. The system recovers angle kinematics during walking
or five joints (pelvis, hip, foot, ankle and knee) in three planes (sagittal,
rontal and transverse), with a sampling rate of 100 Hz. People were
sked to walk naturally for 10 m in a straight line on flat ground, at a
pontaneous speed. This process was repeated five times in average,
ach time corresponding to a trial. The angular kinematics of each
oint, captured during each gait trial, is a periodic signal consisting of
ifferent consecutive cycles, defined between the initial contact event
nd the terminal swing event. This complete signal was segmented into
ait cycles, automatically detected with the high-pass algorithm [28]
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Table 2
Descriptive statistics for pathological subjects of the CRC dataset.

Hemiparesis (HP) Paraparesis (PP) Tetraparesis (TP)

Number of patients 18 9 11
Female 6 4 3
Age (Mean ± Std) 47.78 ± 13.85 (years old) 48.44 ± 8.37 (years old) 43.90 ± 14.94 (years old)
Height (Mean ± Std) 1.72 ± 0.11 (m) 1.65 ± 0.10 (m) 1.71 ± 0.09 (m)
Weight (Mean ± Std) 74.53 ± 12.90 (kg) 64.30 ± 13.06 (kg) 70.90 ± 15.55 (kg)
Speed (Mean ± Std) 0.45 ± 0.23 (m/s) 0.62 ± 0.28 (m/s) 0.55 ± 0.18 (m/s)
Number of cycles 162 78 106
Table 3
Descriptive statistics for the training and validation sets.

Train set Validation set

Number of cycles 384 130
Age (Mean ± Std) 37,69 ± 13.57 37.62 ± 14.37
Number of persons 39 13

and controlled by an expert. The gait cycles were normalized into 51
points (i.e., 1 point for every 2% of the gait cycle).

The healthy subjects recruited did not suffer from any disease
affecting motor function. Patients show different motor deficiencies
affecting one lower limb as in patients with hemiparesis (HP), or
both lower limbs as in patients with paraparesis (PP) or tetraparesis
(TP) (also affecting upper limbs). The dataset contains 18 patients
with HP, 9 patients with PP and 11 patients with incomplete TP. The
characteristics of patients per motor impairment are given in Table 2.

2.3. Data preprocessing and partitioning

As gait cycles from both datasets do not have the same lengths, we
normalize the cycles from LUX dataset into 51 points, by selecting one
point out of two. Additionally, we apply a Z-score transformation to
them on a cycle-by-cycle basis to exploit simultaneously both datasets.

In the following, we use LUX dataset for both training and validation
purposes, in particular because it exhibits the broadest age distribution
of the healthy population (see Table 1). As depicted in Table 3, 75% and
25% of cycles belong respectively to the training and validation sets,
ensuring a similar age distribution in both sets. Also, we impose that
cycles belonging to a same individual cannot be included in both sets;
in other words, each person’s cycles are exclusive to one set. Finally,
CRC dataset serves as our test set for gait quality assessment.

2.4. Proposed HMM-based approach

The Hidden Markov Model (HMM) is a double stochastic pro-
cess [29] with hidden states that are not directly observable but can
be inferred through observable stochastic processes. The model struc-
ture includes states, transition probabilities, and a set of probability
distributions that can be either discrete or continuous, depending on
the type of observations 𝑂 = (𝑂𝑡), where 𝑂𝑡 is the observation at time
𝑡.

Let us denote by 𝑆 =
{

𝑠1, 𝑠2, 𝑠3,… , 𝑠𝑁
}

the state vector, where 𝑁
represents the number of states in the model and the state 𝑠𝑖 visited at
time 𝑡 is denoted by the variable 𝑞𝑡.

The complete parameter set in the case of a continuous HMM is
often defined in the literature such as 𝜆 = (𝐴, 𝐵 , 𝜋), where:

- 𝐴 =
{

𝑎𝑖𝑗
}

is the transition probability distribution matrix, where:

𝑎𝑖𝑗 = 𝑃
(

𝑠𝑗 = 𝑞𝑡+1 ∣ 𝑠𝑖 = 𝑞𝑡
)

, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (1)

- The emission law of observation 𝑂𝑡 by each state 𝑗 is modeled
using a multivariate Gaussian mixture, such as:

𝑏𝑗 (𝑂𝑡) =
𝑀
∑

𝑐𝑗 𝑚
(

𝑂𝑡;𝜇𝑗 𝑚, 𝛴𝑗 𝑚
)

, (2)

𝑚=1

3 
Fig. 1. A four-state, left-to-right HMM. Each state is modeled using a mixture density
(depicted in black) of two diagonal Gaussians.

where 𝑀 is the number of Gaussian mixtures per state, 𝑐𝑗 𝑚 is the
mixture coefficient for the 𝑚t h mixture in state 𝑗 , (

𝑂𝑡;𝜇𝑗 𝑚, 𝛴𝑗 𝑚
)

represents the multivariate Gaussian density of mean vector 𝜇𝑗 𝑚 for the
𝑚t h mixture in state 𝑗 and 𝛴𝑗 𝑚 is the corresponding covariance matrix.

- The initial probability distribution is denoted by 𝜋 =
{

𝜋𝑖
}

, where:

𝜋𝑖 = 𝑃
(

𝑠𝑖 = 𝑞1
)

, 1 ≤ 𝑖 ≤ 𝑁 (3)

In this study, we propose to train a continuous HMM on normalized
gait cycles of healthy subjects from LUX dataset (refer to Table 3). Then,
we compute the log-likelihood score for each cycle in the test set (CRC
dataset), and consider this score as our gait quality metric.

Consistent with the existing literature [30–32], we chose to model
gait cycles using a four-state left-to-right topology (see Fig. 1), where
each state corresponds to a gait phase. This topology is well suited to
model normal gait due to the sequential evolution of gait phases.

As the number of states is equal to four, the only hyper-parameter
to tune is the number of mixtures 𝑀 . This number reflects a trade-
off between the complexity of the model and its performance. We
trained the HMM using the Baum-Welch algorithm (also known as the
Expectation–Maximization algorithm) [29]. This algorithm estimates
the parameters of the HMM to optimize the likelihood of the observed
sequence on the training set. The training process stops when the model
converges, with a set tolerance of 10−3. For the inference phase, the
model employs the Viterbi algorithm to decode the state sequence
based on each provided observation (a gait cycle) [29]. In this study,
we use in each state a mixture of two diagonal Gaussians, as this
configuration yielded the highest likelihood score on the validation set.
The obtained Gaussian densities for the four states are displayed in
Fig. 1.

3. Experimental results

In this section, we present the results obtained using HMM like-
lihood scores comparatively to GVS and DTW methods. To facilitate
comparisons, we normalize the scores for each method to a range of
0 to 1 using the min–max scaler. Of note, HMM score is inversely
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Fig. 2. Histograms and kernel density curves of normalized HMM scores for HC (in
blue) and patients (in red) with: (a) PP, (b) TP, (c) HP considering only their Non-
Affected Side, and (d) HP considering only their Affected Side.

Fig. 3. Distribution of normalized HMM scores in bar plots for HC and patients with
HP, PP and TP, considering the left side (in red) and the right side (in blue) separately.

normalized to maintain consistency across methods. Therefore, for all
scores, a zero value denotes a gait quality resembling normal gait, and
a higher value indicates a deterioration in gait.

3.1. Results of the HMM-based approach

Fig. 2 displays the normalized HMM likelihood scores on the CRC
dataset, for Healthy Controls (HC) and patients with HP, PP, TP, by
separating the Affected Side (AS) from the Non-Affected Side (NAS) for
HP.

Fig. 2 first reveals low HMM scores for HC and high values for pa-
tients, as expected. We also observe a sharp distribution for HC scores,
whereas those of patients show an important variance. This suggests
that this method is well-suited for normal gait characterization. Besides,
TP and HP-NAS groups exhibit the highest percentage of overlap with
HC (55.66% and 55.56% respectively). On the other hand, PP and HP-
AS groups show the lowest percentage of overlap with HC (28.21% and
12.35% respectively). These results are consistent with the nature of
gait impairment associated to each group of patients.

Fig. 3 displays the distribution of HMM scores per person consid-
ering, separately, the left side of the body (in red) and the right side
(in blue). Each side of the body is represented per person by a bar
plot illustrating the mean HMM score computed on all cycles for that
side, as well as the upper and lower bounds representing the complete
range of scores. For a clearer visualization, HC are grouped to the left,
while patients are categorized by motor impairment to the right in the
following order: HP with Left affected side (Left-HP), HP with the Right
affected side (Right-HP), PP and then TP.

We observe again in Fig. 3 that HMM scores for HC exhibit very
low score values and low variance compared to patients. Regarding
4 
Fig. 4. Histograms and kernel density curves of normalized GVS scores for HC (in blue)
and patients (in red) with: (a) PP, (b) TP, (c) HP considering only their Non-Affected
Side, and (d) HP considering only their Affected Side.

HP, we note that the affected side exhibits consistently higher score
values than the non-affected side, except for one left-HP. Moreover, the
affected side in HP patients shows higher score variance comparatively
to the corresponding non-affected side. This result reflects the tendency
of the affected side in producing more gait variability. Additionally, we
note that for some HP patients, their non-affected side exhibits the same
behavior as HC in terms of score values and variance.

Finally, we observe an increasing trend of the HMM scores when
moving from incomplete TP to PP and from PP to HP. This trend is
consistent with the fact that TP group in the CRC dataset consists mostly
of incomplete cases of TP, while the HP and PP groups represent cases
of greater impairment.

3.2. Comparison to GVS and DTW methods

Figs. 4 and 5 represent the distributions of GVS and DTW scores,
respectively, for HC and patients.

As with the normalized HMM score, we note that the normalized
GVS and DTW scores show low values for HC, contrary to patients.
However, the distribution of GVS scores for HC is more spread than
those of HMM and DTW scores.

Regarding the percentage of overlap between the score distribution
of HC and HP, we observe a high overlap between HC and HP-NAS,
and a low overlap between HC and HP-AS in terms of DTW scores, as
with HMM. By contrast, this trend is inverted with the GVS score, as
indicated in Fig. 4: HP-AS group shows 24.69% of overlap with HC,
whereas HP-NAS group shows 12.35% of overlap with HC. These first
results suggest a better characterization of normal gait and of patients’
motor impairments with HMM and DTW.

For a deeper analysis, we plot in Fig. 6 the distribution of normal-
ized GVS and DTW scores per person considering, separately, the left
side of the body (in red) and the right side (in blue).

Interestingly, based on the GVS score, we observe in HP patients
that the impacted side does not always have the highest score. Besides,
there is no clear differentiation between the affected and non affected
sides. With DTW and HMM, the opposite trend is observed. Indeed,
with the latter methods, the impacted side displays greater values and
variance than the non-affected one (see Fig. 6b and Fig. 3). However,
the distinction between the affected and non affected sides remains less
pronounced with DTW comparatively to HMM.
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Fig. 5. Histograms and kernel density curves of normalized DTW scores for HC (in
blue) and patients (in red) with: (a) PP, (b) TP, (c) HP considering only their Non-
Affected Side, and (d) HP considering only their Affected Side.

Fig. 6. Distribution of normalized scores in bar plots for HC and patients with HP, PP
and TP, considering the left side (in red) and the right side (in blue) separately using:
(a) GVS and (b) DTW.

Using the Mann–Whitney test, all methods show statistically signif-
icant differences between groups (𝑝-value < 0.05), except between HP
and PP for all methods. In addition, the difference between the affected
and the non-affected sides in HP is more significant with HMM (𝛿 =
0.72) and DTW (𝛿 = 0.54) comparatively to GVS (𝛿 = −0.38). Moreover,
the negative value of the Cliff’s delta value obtained on GVS reflects the
inversion trend between HP-AS and HP-NAS.

These findings point out the weakness of GVS in finely quantifying
the degree of motor impairments, especially when exploiting angular
kinematic data acquired in different acquisition conditions.

In the following, for a deeper analysis, we go a step forward by
assessing the potential of HMM and DTW scores for gait symmetry
measurement.

3.3. Gait asymmetry analysis

Based on the previous results, we study gait asymmetry using only
normalized HMM and DTW scores, by calculating the absolute differ-
ence between the mean scores of the left and right sides of the body.
5 
Fig. 7. Boxplots of asymmetry scores associated with HC and patients with HP, PP
and TP using: (a) HMM and (b) DTW scores.

A smaller asymmetry score implies a more symmetrical gait, whereas
a higher score could suggest potential gait abnormalities, which may
be indicative of a pathological condition or injury. Fig. 7 shows the
distribution of asymmetry scores for HC and patients using HMM and
DTW-based methods.

HC show the lowest asymmetry scores with both HMM and DTW
methods, reflecting the natural symmetry of healthy gait (see Fig. 7).
Besides, HP are those presenting the highest asymmetry scores with
both measures, reflecting the unilateral impact of the pathology. In
between these two extreme behaviors, we observe a progressive trend
of HMM asymmetry scores, which increases when moving from HC to
PP, TP and then to HP. For the PP group, the asymmetry scores are
generally lower than those of HP because of the bilateral impact of
the pathology in this population. For the TP group, asymmetry scores
are more variable: as shown in Fig. 3, for some TP patients there is a
stronger degradation on one side of the body, whereas for some other
TP patients, both sides are affected.

This progressive trend from HC to HP is not observed with DTW
asymmetry scores (see Fig. 7b). Indeed, although the HC and HP groups
remain exhibiting the two extreme behaviors, there is no longer a
differentiation between PP and TP.

These observations are in line with the statistical analysis that
reveals that the HMM shows significant differences between all groups
(𝑝 < 0.05) except between TP and PP. Nevertheless, DTW fails to show
significant differences between several groups (HP vs. TP, HP vs. PP,
and TP vs. PP). Moreover, the HMM achieves a perfect separation
between HC and HP with 𝛿 = 1, which decreases between HC and
PP (𝛿 = 0.58). In comparison, DTW achieves 𝛿 = 0.88 for HC vs. HP
and 𝛿 = 0.84 for HC vs. PP. This highlights HMM’s superior sensitivity
to smaller asymmetry differences and its finer quantification of gait
symmetry among patients’ populations.

These results highlight the limit of the DTW-based method for char-
acterizing the relative behavior of different patients’ groups. Actually,
the DTW-based methods exploits an average waveform representing
normal gait, which cannot represent well enough the natural variability
present in the healthy population. By contrast, our proposed HMM-
based approach encompasses this variability by its statistical nature.
This major advantage allows a finer characterization of deviations
from normal gait, according to each patients’ group. This leads to a
specific characterization per patients’ group and an explainable relative
behavior between them.

3.4. HMM-based gait assessment in rehabilitation

We exploit the HMM score for assessing patients’ evolution during
a rehabilitation process. At the ‘‘Centre de Rééducation de Coubert’’,
patients followed rehabilitation and our CRC dataset contains gait se-
quences from two different sessions: one before treatment and another
after treatment. Both sessions were captured in the same conditions and
with the same protocol previously described in Section 2.2.2. Tables 1
and 4 contain the description of patients before treatment (Pre-T) and
after treatment (Post-T), respectively.
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Fig. 8. Distributions of HMM-based gait quality scores for HC and patients with HP,
PP, and TP at: (a) pre-treatment and (b) post-treatment.

Table 4
Descriptive statistics for CRC patients (Post-T).

CRC Patients ‘‘Post-T’’

Number of patients 38
Female 13
Age (Mean ± Std) 46.89 ± 12.98 (years old)
Height (Mean ± Std) 1.70 ± 0.10 (m)
Weight (Mean ± Std) 71.55 ± 13.55 (kg)
Number of cycles 374

Table 5
Cliff’s delta values before and after treatment between HC and patients.

HC vs. HP HC vs. PP HC vs. TP

Pre-treatment 0.84 0.98 0.65
Post-treatment 0.72 0.96 0.45

Fig. 8 shows the distributions of HMM scores per individual for HC
as well as for patients before treatment (Fig. 8a) and after treatment
(Fig. 8b).

The majority of patients exhibit a decrease in post-treatment HMM
scores and a lower variance (Fig. 8b) compared to pre-treatment scores
(Fig. 8a). This reveals the shift of patient’s behavior after treatment
towards that of the HC group. More precisely, after treatment, the
Cliff’s delta value between HC and patients’ groups is lower than those
obtained before treatment, as reported in Table 5.

Additionally, this trend is also observed when comparing the HMM
scores between the affected and non-affected sides in HP patients. In-
deed, after treatment, the Cliff’s delta significantly decreases from 0.72
to 0.25, which reflects an improvement of gait symmetry after reha-
bilitation. These findings underscore the sensitivity of our HMM-based
score in capturing therapeutic effects on gait quality.

4. Discussion

In this retrospective study, we exploited a novel gait quality mea-
sure based on the likelihood score derived from an HMM. To this end,
we have used two datasets : one for modeling healthy gait and the
other one for quantifying gait deviations for both healthy subjects and
patients with different motor impairments. We compared our proposed
HMM score to the traditional GVS and DTW-based scores, since we
considered only the knee joint kinematics in the sagittal plane.

Results showed that DTW and HMM-based approaches both lead to
a sharp HC scores distribution on the CRC dataset, proving a stronger
generalization power, especially when using data acquired with differ-
ent acquisition systems. However, the GVS shows a larger HC scores’
6 
distribution and fails to distinguish between the impacted and non-
impacted sides in the HP population. This was further confirmed by
Cliff’s delta value that revealed a lower and negative value for the
GVS, in contrast to DTW and HMM, for which the distinction was more
pronounced: 𝛿 = −0.38 for GVS, compared to 𝛿 = 0.72 for HMM and
𝛿 = 0.54 for DTW. This can be explained by the fact that the GVS cannot
handle local distortions and time-shifts between gait signals, unlike
DTW and HMM. For these reasons, it lacks the sensitivity required to
distinguish between the impacted and non-impacted sides in the HP
population.

Moreover, DTW and HMM-based methods provide a refined char-
acterization of motor impairments, thanks to their ability to capture
the dynamics of gait signals. However, the HMM-based method out-
performs the DTW-based approach in distinguishing the three motor
impairments under study. Indeed, by computing an asymmetry score
for bilateral gait, we observed a progressive increase of such score from
HC to PP, TP and then HP, with HMM likelihood scores and not with
DTW scores.

In addition, the statistical analysis revealed that the HMM scores
lead to significant differences between all groups, except between TP
and PP, whereas DTW failed to demonstrate significant differences
between several groups. Moreover, the HMM achieved a higher sep-
aration between HC and HP compared to DTW. The HMM also showed
a lower separation between HC and PP compared to DTW, highlighting
the higher ability of the HMM for finely quantifying differences in
symmetry between patients’ groups.

Actually, the DTW-based method has the drawback on relying on an
average waveform accounting for normal gait, which cannot represent
well enough the natural variability present in the healthy population.
By contrast, our proposed HMM-based approach models this variability
thanks to its statistical nature. This major advantage leads to a finer
characterization of deviations from normal gait depending on each
patients’ group.

Finally, our HMM-based approach was used to assess gait quality
progress after rehabilitation. Our results showed that post-treatment
cycles get closer to HC cycles’ behavior. Indeed, we found that Cliff’s
delta between HC and the other groups in the post-treatment setting is
lower than in the pre-treatment setting (0.72 vs. 0.84 for HC and HP;
0.96 vs. 0.98 for HC and PP; 0.45 vs. 0.65 for HC and TP). A similar
trend was observed when comparing the scores between HP (AS) and
(NAS) groups, where Cliff’s delta significantly dropped from 0.72 to
0.25 post-treatment. These findings underscore the sensitivity of our
proposed gait quality measure in detecting therapeutic effects.

Consequently, this work confirmed our previous findings [17,18]
that DTW outperforms traditional metrics like GVS in assessing gait
quality. However, we found that the HMM-based method provides a
finer and a more sensitive score due to the ability of the HMM to
capture subtle variations in gait cycles, thanks to its statistical nature.
Thus, while DTW remains effective, the HMM offers an even more
precise assessment of gait deviations, making it an accurate tool for
evaluating motor impairments and rehabilitation progress.

There are two main limitations to this study. First, we conducted our
experiments on two datasets of limited size. Nevertheless, such datasets
were found useful to evaluate the generalization power of our approach
when confronted to data acquired with different acquisition systems.
One additional weakness consists in the use of time-normalized gait
signals, as frequently done in the literature. Indeed, as investigated
in [17], this leads to a loss of information that may contribute to
a more refined characterization of individuals. Actually, the HMM is
well suited for handling sequences of different lengths. This was not
addressed in the current study because the LUX dataset contains only
normalized angular kinematics data.
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5. Conclusion

In this study, we proposed to use Hidden Markov Models (HMM)
or human gait analysis at two levels : firstly, for building a normal gait
odel to represent gait dynamics in the healthy population; secondly,

or retrieving a gait quality metric to quantify healthy and pathological
ait deviations through the HMM likelihood score.

Experimental results demonstrated that the statistical modeling of
ait dynamics with HMM is useful for capturing the intrinsic variability

in the healthy population, and provides a fine characterization of motor
mpairments in terms of gait degradation and bilateral gait asymmetry.

Our HMM-based approach was also found powerful for the assessment
f gait quality progress after rehabilitation.

Further experiments should be conducted on larger datasets to
onfirm the potential of our approach for gait analysis. Furthermore,
n this work we applied the HMM on time-normalized signals and
onsidering only the knee joint kinematics. It might be interesting to
onsider raw signals to keep the temporal properties of gait cycles and

to extend our analysis to additional joint kinematics and planes.
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